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Abstract: We present a set covering algorithm and a compositional algorithm to describe sequences of www 
pages visits in click-stream data. The set covering algorithm utilizes the approach of rule specialization like 
the well known CN2 algorithm, the compositional algorithm is based on our original KEX algorithm, 
however both algorithms deal with sequences of events (visited pages) instead of sets of attribute-value pairs. 
The learned rules can be used to predict next page to be viewed by a user or to describe the most typical paths 
of www pages visitors and the dependencies among the www pages. We have successfully used both 
algorithms on real data from an internet shop and we mined useful information from the data. 
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1  Introduction 

According to the W3C Web Characterization Activity, click-stream is a sequential series of page view (displays 
on user’s browser at one time) requests. A user session is the click-stream of page views for a single user across 
the entire web, a server session is a click-stream in a user session for a particular web site. A set of server 
sessions (visits) is the necessary input for web usage mining tools. 

We can categorize web mining into three areas: web content mining,  web structure mining and web usage 
mining [9]. Web usage mining mines the data derived from interactions of the users while browsing the web. 
The web usage data includes the data from web server access logs, proxy server logs, browser logs, user profiles, 
registration data, cookies, user queries etc. A web server log is an important source for performing web usage 
mining because it explicitly records the browsing behavior of site visitors. The typical problem (solved in the 
data preprocessing step) is thus distinguishing among unique users, server sessions episodes etc. 

Web usage mining focuses on techniques that could predict user behavior while the user interacts with the 
web.  The applications of web usage mining could be classified into two main categories: (1) learning user 
profile or user modeling, and (2) learning user navigation patterns [5]. The methods used for web usage mining 
are (descriptive) statistical analysis, association rules (to relate pages that are often referenced together), 
clustering (to build usage clusters or page clusters), classification (to create user profiles), sequential pattern 
discovery (to find inter-session patterns such that the presence of a set of  page views is followed by another set 
of page views in a time-ordered set of episodes), or dependency modeling (to capture significant dependencies 
among various variables in the web domain) [8].  Some systems has already been developed for this area: 
WebSIFT (that uses clustering, statistical analysis or association rules) [4],  WUM (that looks for association 
rules using some extension of SQL) [7], or WebLogMiner (that combines OLAP and KDD) [10]. 

The algorithms described in this paper contribute to the area of sequential pattern discovery by learning 
decision rules to predict next page the user will visit based on his session history (pages visited just before). We 
describe the algorithms in  section 2 and give some experimental results obtained on real web log data of an 
internet shop in section 3. 
 
 
 
 



2  Learning Rules 

2.1  Classical rule learning algorithms 
 
Decision rules in the form 

 Ant  ⇒  Class 

where Ant (antecedent, condition) is a conjunction of values of input attributes (called categories or selectors) 
and Class is a category of class attribute C, are one of most popular formalisms how to express classification 
models learned from data.   

The commonly used approach to learning decision rules is the set covering approach also called „separate and 
conquer“. The basic idea of this approach is to create a rule that covers some examples of a given class and 
remove these examples form the training set. This is repeated for all examples not covered so far as shown in fig. 
1. There are two basic ways how to create a single rule (step 1 of the algorithm): 
1. by rule generalization, i.e. by removing categories from antecedent of a potential rule (starting from a rule 

with categories of all input attributes in the antecedent) – this method is used in the AQ algorithms by 
Michalski (see e.g. [6]). 

2. by rule specialization,  i.e. by adding categories to the antecedent of a potential rule (starting from a rule with 
empty antecedent) – this method is used e.g. in CN2 [3]  or CN4 [2]. 

 
The other way how to create decision rules is the compositional approach. In this approach the covered 

examples are not removed during learning, so an example can be covered with more rules. Thus more rules can 
be used during classification. In compositional approach, all applicable rules are used and their particular 
contributions to classification are combined into the final decision. To do this, some numerical value is usually 
added to the rule, the simplest one is the rule confidence (also called validity)  defined as n(Ant ∧ Class)/n(Ant), 
where n(Ant ∧ Class) is the number of examples that match both And and Class and n(Ant) is the number of 
examples that match Ant in the data. Fig. 2 shows an simplified version of the KEX algorithm, we developed in 
the 90th; this system deploys the compositional approach in a generate-test cycle and uses weight w (based on 
validity) to express uncertainty of a rule [1]. Let us mention, that in some broader sense, naive bayesian classifier 
follows the compositional approach as well. 
 
 
 
 
 
 
 
 
 

Fig. 1.  Set covering algorithm for two class problems 

 
 
 
 
 
 
 

 

 

Fig. 2.  Simplified version of the KEX rule learning algorithm 

 
 

Set covering algorithm 
1. find a rule, that covers some positive examples and no negative example of a 

given class (concept), 
2. remove covered examples from the training set DTR,  
3. if DTR contains some positive examples (not covered so far) goto 1 else end. 

Compositional algorithm 
1. add empty rule to the rule set KB 
2. repeat  

2.1. find by rule specialization a rule Ant  ⇒  Class that fulfils the user given 
criteria on lengths and validity, 

2.2. if this rule significantly improves the set of rules KB build so far (we test 
using the χ2 test the difference between the rule validity and the result of 
classification of an example covered by Ant) then add the rule to KB,  



2.1  Rule learning algorithms for click-streams 

We follow the rule learning approach based on rule specialization in our algorithm as well. The main difference 
to conventional rule learning algorithms is due to the fact that instead of unordered set of categories we deal with 
an ordered sequence of page views (pages for short). So  we are looking for rules in the form 

Ant  ⇒ page (p) 
where  Ant is a sequence of pages 
 page is a page view that directly follows the sequence Ant 

 p is the validity of the rule, i.e. p = 
n(Ant//page)

n(Ant)  . 

In the formula above we denote the number the occurrences of a sequence in the data by n(sequence) and a 
concatenation of two sequences s1 and s2 by s1//s2. 
 

The main idea of our set covering algorithm is to add (for a particular page to be predicted) rules of growing 
length of Ant – we thus create rules by rule specialization. We check each rule against its generalization created 
so far. Adding a new rule to the model is determined by χ2 test that compares the validity  of these two rules. If 
the rule in question is added to the model, its generalization is updated by re-computing the validity by 
ignoring (removing) sequences that are covered by the newly added rule.  

The main idea of our compositional algorithm is to add (for a particular page to be predicted) rules of 
growing length of Ant – we thus create rules by rule specialization. We check each rule against the results of 
classification done by all rules created so far. Adding a new rule to the model is determined by χ2 test that 
compares the validity  of the rule to be added with the weight of class (predicted page) inferred during 
classification for a sequence Ant.  The weight of a class is computed according to the formula 
 

w1 ⊕ w2  =  
w1 × w2

w1 × w2 + (1 - w1) × (1 - w2)
 . 

 
As we assume that most relevant for prediction of occurrence of page are pages that are closest to page, the 

specialization of the rule Ant  ⇒ page is done by adding a new page to the beginning of the sequence Ant. 
Analogously, a generalization of the rule Ant  ⇒ page is done by removing a page from the beginning of the 
sequence Ant.  
 

The set covering algorithm is shown in Fig. 3, the compositional algorithm is shown in Fig. 4. Both 
algorithms share the user given input parameters  lmax (max. length of the sequence Ant), nmin (min. relative 
frequency of a page – this parameter set to zero will enable to create a rule that page Y never follows after page 
X). The parameter lmax  is also used for data preprocessing; we transform each server session1 of arbitrary length 
into a set of episodes of length   lmax + 1 using a sliding window. So e.g. the two sessions 

A,B,E 
A,B,C,E,D 

will be for lmax  = 2 transformed into following set of episodes  
Ø,Ø,A 
Ø,A,B 
A,B,E 
Ø,Ø,A 
Ø,A,B 
A,B,C 
B,C,E 
C,E,D 

 
The system is implemented in the Borland’s Delphi (version 7.0) for Windows (W-98 – W-XP). The minimal 

configuration of the computer is not set; it’s helpful to use computers with processor at least 600 MHz for more 
extensive analysis. The system doesn’t use more than quadruple of the size of an input file in the memory. 

We have used the object model of programming whereas each class is stored in particular unit. It’s provided 
lucidity and easy service of the code. The algorithm for searching rules is implemented in particular unit, so 
others algorithms could be easily added to the program (the source code had to be recompiled because the 
program is represented by 1 file after compilation). 
                                                           
1 Recall that a server session corresponds to one visit of one user on the analyzed web site. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. The set covering rule learning algorithm for click-stream analysis 

 
The algorithm for searching rules itself is divided to two parts (as you could see above) – the initialization and 
the main loop. The main loop is implemented as a recursive function that is called for particular rules. At the 
beginning, the function generates specializations, after it modifies frequency of actual rule and to the end it 
evaluates the chi-square test for actual rule. 

The main loop is called from the initialization with the subsidiary rule * => * which assures that all rules 
default => page will be added to the result. The algorithm for searching rules runs in second thread, so found 
rules could be showed immediately in the core thread of the application - user could stop the algorithm when its 
continuation isn’t needful. The user could restrict the space of searching by set rules that will not be extended 
more. Pages that don’t have required relative frequency are added to a set OTHERS and the system works with 
this set as with single page. 

Found rules could be saved to the file (and loaded back) or exported to  Excel. The application enables also 
to predict a next page in a sequence.  
 
 
 
 
 
 
 

Initialization 
for each page page occurring in the data 
1. compute its relative frequency in the data as 

P =  
# of occurrence of page in the input episodes

# of all input episodes   

2. if P ≥ nmin 
2.1 add  default ⇒ page into the list of rules Rules 
2.2 add page into list of pages Pages 
2.3 add  default ⇒ page into list of implications Impl 
 
Main loop 
while Impl not empty do 
  1.  take first rule Ant ⇒ page from Impl  
  2.  if  length of Ant < lmax then 
        2.1.   for each page pp from Pages 
             2.1.1  find the most specific generalization of the rule pp//Ant ⇒ page in  
                       Rules (denote it AntX ⇒ page) 
             2.1.2  compare (using chi2 test) the validity of rules  pp//Ant ⇒ page and  
                       AntX ⇒    page 

2.2. from all created rules pp//Ant ⇒ page select the one with the most 
significant difference in validity (denote this rule ppbest//Ant ⇒ page) 

2.3. if  ppbest//Ant ⇒ page significantly at a given significance level differs 
                from AntX ⇒ page then 
               2.3.1  add  rule ppbest//Ant ⇒ page to Rules and Impl 
               2.3.2  re-compute the validity of rule AntX ⇒ page by taking into   
                         account only episodes  containing AntX and not containing Ant 
               2.3.3  recursively update Rules  (i.e. find the most specific  
                         generalization of AntX ⇒ page , compare this generalization 
                         with AntX ⇒ page, remove AntX ⇒ page from Rules if the  
                         difference is not significant etc.) 
  3.  remove Ant ⇒ page from Impl 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The compositional rule learning algorithm for click-stream analysis 

 

 
 
Fig. 5.  Screenshot of the system 

Initialization 
 
for each page page occurring in the data 
1. compute its relative frequency in the data as 

P =  
# of occurrence of page in the input episodes

# of all input episodes   

2. if  p ≥ nmin 
2.1. add  default ⇒ page into the list of rules Rules 
2.2. add page into list of pages Pages 
2.3. add  default ⇒ page into list of implications Impl 

 
Main loop 
 
while Impl not empty do 
  1.  take first rule Ant ⇒ page from Impl  
  2.  if  length of Ant < lmax then 
        2.1.   for each page pp from Pages 
             2.1.1  create the rule pp//Ant ⇒ page and compute its validity p 
             2.1.2  from all rules in Rules that cover the sequence pp//Ant compute the  
                       resulting weight for page as w⊕(pp//Ant)   
             2.1.3 compare (using chi2 test) p and w⊕(pp//Ant) 
             2.1.4  if   p significantly differs from w⊕(pp//Ant)  then 
                     2.1.4.1  compute w from the formula w ⊕ w⊕(ppAnt) = p 
                     2.1.4.2  add  rule pp//Ant ⇒ page(w) to Rules and Impl 
             2.1.5  add   pp//Ant ⇒ page(w) to Impl  
       2.2  remove Ant ⇒ page from Impl 



3  Experiments 

We tested our algorithms on a real data obtained from one Czech internet shop. The log file (about 3 millions of 
records – the traffic of 24 days) contained the usual information: time, IP address, page request and referee. In 
addition to this, the log data contained also a generated session ID so the identification of users was relatively 
easy – we treated as sequence of pages with the same ID as a visit of one user2.  An example of records in the log 
file is shown in fig. 4. The log file allowed us to identify two types of information about the visited page: page 
type and page content. By page type we understand information related to a general structure of the internet shop 
(detail of a product, shopping chart, product comparison etc), by page content we understand the product (or its 
category) offered on the page. These two points of view enable us to perform two different types of analyses: 
analysis of product preferences and analysis of shopping behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Part of the web log 

 
In the first step of data preprocessing we identified particular users by the session ID and we created a file 

containing sequences of visited pages for each user. So for the log file shown in fig. 4, we created the page-type 
sequence (session)  
 

start, dp, dp, sb, sb, end 
 

and the page-content sequence (session) 
 

start, 124, 148, end 
 
for the user 1993441e8a0a4d7a4407ed9554b64ed1. In this example, dp denotes “detail of product”, sb denotes 
“shopping basket”, 124 denotes “loud-speaker ” and 148 denotes “DVD player”. Note, that we added two pages 
to each sequence found in the data, the start page and the end page. 

In the second step we excluded sessions of length 1. This is a general recommendation as sessions of length 1 
are usually created by web  bots crawling the web space and collecting pages. Moreover, as we are interested in 
prediction next page in a click-stream, we need sequences of length 2 and more. This reduces the number of 
sessions (sequences) to 200 000; the average number of visits by one user (the average length of session) was 16; 
the median was 8 and modus 2. 

In the third step of data preprocessing, we created 2 basic files that entered to the analyses. In the first one, 
there were saved sequences of page type regardless of the product offered on this page. In the second one, there 
were saved sequences of page content (sequences of products) regardless of the page type (pages without 
products were excluded from these sequences). During this step, the products were divided to 30 categories.  
 

                                                           
2 Because there was no possibility how to identify two sessions of one user we consider each session with distinct ID as one 

user. 

unix time; IP address; session ID; page request; referee 
1074589200;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/dp
/?id=124;www.google.cz; 
1074589201;194.213.35.234;3995b2c0599f1782e2b40582823b1c94;/d
p/?id=182; 
1074589202;194.138.39.56;2fd3213f2edaf82b27562d28a2a747aa;/;h
ttp://www.seznam.cz; 
1074589233;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/dp
/?id=148;/dp/?id=124; 
1074589245;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/sb
/;/dp/?id=148; 
1074589248;194.138.39.56;2fd3213f2edaf82b27562d28a2a747aa;/co
ntacts/; /; 
1074589290;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/sb
/;/sb/; 



 The modeling consisted in searching for rules using the algorithm described in section 2. The algorithm for 
searching was running repeatedly with various input parameters.  

The first set of experiments was performed for the sequences of page types.  Among the obtained results we 
can find the rule   

 
dp, sb -> sb (Ant: 5174; AntSuc: 4801; P: 93%) 

 
that covers the session of user 1993441e8a0a4d7a4407ed9554b64ed1 (see above). Another interesting rules were 
e.g.  

 
  ct -> end  (Ant: 5502; AntSuc: 1759; P: 32%) 

                  faq -> help (Ant: 594; AntSuc: 127; P: 21%) 
 

In the listing above, ct stands for “contact”, Ant stands for ||Ant|| and AntSuc stands for ||Ant//Suc||. 
 

The second set of experiments was performed for the sequences of products (page contents). For the request 
of the data provider, we generated all rules of length 2 for the sequences of products. From these rules passes of 
users between products were seen very well. Examples of such rules are: 
 

loud-speakers -> video; DVD (Ant: 14840, AntSuc: 3785, P: 0.26) 
data cables -> telephones (Ant: 2560, AntSuc: 565, P: 0.22) 
PC peripheries -> telephones (Ant: 8671, AntSuc: 1823, P: 0.21) 

 
The models obtained in both sets of experiments can directly be used to predict the behavior of an user. So 

e.g. for a sequence of pages dp, sb  the system will predict  sb as the next page,  and for the sequence loud-
speakers the system will predict video; DVD. 

 

4 Conclusions 

We present two new algorithms to learn decision rules for web usage mining, set-covering and compositional 
one. Although we developed our algorithms within a project of click-stream analysis, it can be used more 
generally, to predict occurrence of an event in a sequence of any types of events (e.g. transactions on banking 
accounts, or network intrusion).  Our experiments with a real data of an internet shop showed usefulness of  the 
proposed approach. In our future work, we plan to perform a thorough comparison of both approaches. 
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