
Rule induction for click-stream analysis: set covering and compositional
approach

Petr Berka,Vladimír Laš, Tomáš Kočka,

FIS, VŠE nám. W. Churchilla 4, 130 67, Praha

berka@vse.cz, vladalas@hotmail.com, kocka@vse.cz

Abstract: We present a set covering algorithm and a compositional algorithm to describe sequences of www
pages visits in click-stream data. The set covering algorithm utilizes the approach of rule specialization like
the well known CN2 algorithm, the compositional algorithm is based on our original KEX algorithm,
however both algorithms deal with sequences of events (visited pages) instead of sets of attribute-value pairs.
The learned rules can be used to predict next page to be viewed by a user or to describe the most typical paths
of www pages visitors and the dependencies among the www pages. We have successfully used both
algorithms on real data from an internet shop and we mined useful information from the data.

Keywords: click-stream, decision rules, web usage mining

1 Introduction

According to the W3C Web Characterization Activity, click-stream is a sequential series of page view (displays
on user’s browser at one time) requests. A user session is the click-stream of page views for a single user across
the entire web, a server session is a click-stream in a user session for a particular web site. A set of server
sessions (visits) is the necessary input for web usage mining tools.

We can categorize web mining into three areas: web content mining, web structure mining and web usage
mining [9]. Web usage mining mines the data derived from interactions of the users while browsing the web.
The web usage data includes the data from web server access logs, proxy server logs, browser logs, user profiles,
registration data, cookies, user queries etc. A web server log is an important source for performing web usage
mining because it explicitly records the browsing behavior of site visitors. The typical problem (solved in the
data preprocessing step) is thus distinguishing among unique users, server sessions episodes etc.

Web usage mining focuses on techniques that could predict user behavior while the user interacts with the
web. The applications of web usage mining could be classified into two main categories: (1) learning user
profile or user modeling, and (2) learning user navigation patterns [5]. The methods used for web usage mining
are (descriptive) statistical analysis, association rules (to relate pages that are often referenced together),
clustering (to build usage clusters or page clusters), classification (to create user profiles), sequential pattern
discovery (to find inter-session patterns such that the presence of a set of page views is followed by another set
of page views in a time-ordered set of episodes), or dependency modeling (to capture significant dependencies
among various variables in the web domain) [8]. Some systems has already been developed for this area:
WebSIFT (that uses clustering, statistical analysis or association rules) [4], WUM (that looks for association
rules using some extension of SQL) [7], or WebLogMiner (that combines OLAP and KDD) [10].

The algorithms described in this paper contribute to the area of sequential pattern discovery by learning
decision rules to predict next page the user will visit based on his session history (pages visited just before). We
describe the algorithms in section 2 and give some experimental results obtained on real web log data of an
internet shop in section 3.

2 Learning Rules

2.1 Classical rule learning algorithms

Decision rules in the form

 Ant ⇒ Class

where Ant (antecedent, condition) is a conjunction of values of input attributes (called categories or selectors)
and Class is a category of class attribute C, are one of most popular formalisms how to express classification
models learned from data.

The commonly used approach to learning decision rules is the set covering approach also called „separate and
conquer“. The basic idea of this approach is to create a rule that covers some examples of a given class and
remove these examples form the training set. This is repeated for all examples not covered so far as shown in fig.
1. There are two basic ways how to create a single rule (step 1 of the algorithm):
1. by rule generalization, i.e. by removing categories from antecedent of a potential rule (starting from a rule

with categories of all input attributes in the antecedent) – this method is used in the AQ algorithms by
Michalski (see e.g. [6]).

2. by rule specialization, i.e. by adding categories to the antecedent of a potential rule (starting from a rule with
empty antecedent) – this method is used e.g. in CN2 [3] or CN4 [2].

The other way how to create decision rules is the compositional approach. In this approach the covered

examples are not removed during learning, so an example can be covered with more rules. Thus more rules can
be used during classification. In compositional approach, all applicable rules are used and their particular
contributions to classification are combined into the final decision. To do this, some numerical value is usually
added to the rule, the simplest one is the rule confidence (also called validity) defined as n(Ant ∧ Class)/n(Ant),
where n(Ant ∧ Class) is the number of examples that match both And and Class and n(Ant) is the number of
examples that match Ant in the data. Fig. 2 shows an simplified version of the KEX algorithm, we developed in
the 90th; this system deploys the compositional approach in a generate-test cycle and uses weight w (based on
validity) to express uncertainty of a rule [1]. Let us mention, that in some broader sense, naive bayesian classifier
follows the compositional approach as well.

Fig. 1. Set covering algorithm for two class problems

Fig. 2. Simplified version of the KEX rule learning algorithm

Set covering algorithm
1. find a rule, that covers some positive examples and no negative example of a

given class (concept),
2. remove covered examples from the training set DTR,
3. if DTR contains some positive examples (not covered so far) goto 1 else end.

Compositional algorithm
1. add empty rule to the rule set KB
2. repeat

2.1. find by rule specialization a rule Ant ⇒ Class that fulfils the user given
criteria on lengths and validity,

2.2. if this rule significantly improves the set of rules KB build so far (we test
using the χ2 test the difference between the rule validity and the result of
classification of an example covered by Ant) then add the rule to KB,

2.1 Rule learning algorithms for click-streams

We follow the rule learning approach based on rule specialization in our algorithm as well. The main difference
to conventional rule learning algorithms is due to the fact that instead of unordered set of categories we deal with
an ordered sequence of page views (pages for short). So we are looking for rules in the form

Ant ⇒ page (p)
where Ant is a sequence of pages
 page is a page view that directly follows the sequence Ant

 p is the validity of the rule, i.e. p =
n(Ant//page)

n(Ant) .

In the formula above we denote the number the occurrences of a sequence in the data by n(sequence) and a
concatenation of two sequences s1 and s2 by s1//s2.

The main idea of our set covering algorithm is to add (for a particular page to be predicted) rules of growing
length of Ant – we thus create rules by rule specialization. We check each rule against its generalization created
so far. Adding a new rule to the model is determined by χ2 test that compares the validity of these two rules. If
the rule in question is added to the model, its generalization is updated by re-computing the validity by
ignoring (removing) sequences that are covered by the newly added rule.

The main idea of our compositional algorithm is to add (for a particular page to be predicted) rules of
growing length of Ant – we thus create rules by rule specialization. We check each rule against the results of
classification done by all rules created so far. Adding a new rule to the model is determined by χ2 test that
compares the validity of the rule to be added with the weight of class (predicted page) inferred during
classification for a sequence Ant. The weight of a class is computed according to the formula

w1 ⊕ w2 =
w1 × w2

w1 × w2 + (1 - w1) × (1 - w2)
 .

As we assume that most relevant for prediction of occurrence of page are pages that are closest to page, the

specialization of the rule Ant ⇒ page is done by adding a new page to the beginning of the sequence Ant.
Analogously, a generalization of the rule Ant ⇒ page is done by removing a page from the beginning of the
sequence Ant.

The set covering algorithm is shown in Fig. 3, the compositional algorithm is shown in Fig. 4. Both
algorithms share the user given input parameters lmax (max. length of the sequence Ant), nmin (min. relative
frequency of a page – this parameter set to zero will enable to create a rule that page Y never follows after page
X). The parameter lmax is also used for data preprocessing; we transform each server session1 of arbitrary length
into a set of episodes of length lmax + 1 using a sliding window. So e.g. the two sessions

A,B,E
A,B,C,E,D

will be for lmax = 2 transformed into following set of episodes
Ø,Ø,A
Ø,A,B
A,B,E
Ø,Ø,A
Ø,A,B
A,B,C
B,C,E
C,E,D

The system is implemented in the Borland’s Delphi (version 7.0) for Windows (W-98 – W-XP). The minimal

configuration of the computer is not set; it’s helpful to use computers with processor at least 600 MHz for more
extensive analysis. The system doesn’t use more than quadruple of the size of an input file in the memory.

We have used the object model of programming whereas each class is stored in particular unit. It’s provided
lucidity and easy service of the code. The algorithm for searching rules is implemented in particular unit, so
others algorithms could be easily added to the program (the source code had to be recompiled because the
program is represented by 1 file after compilation).

1 Recall that a server session corresponds to one visit of one user on the analyzed web site.

Fig. 3. The set covering rule learning algorithm for click-stream analysis

The algorithm for searching rules itself is divided to two parts (as you could see above) – the initialization and
the main loop. The main loop is implemented as a recursive function that is called for particular rules. At the
beginning, the function generates specializations, after it modifies frequency of actual rule and to the end it
evaluates the chi-square test for actual rule.

The main loop is called from the initialization with the subsidiary rule * => * which assures that all rules
default => page will be added to the result. The algorithm for searching rules runs in second thread, so found
rules could be showed immediately in the core thread of the application - user could stop the algorithm when its
continuation isn’t needful. The user could restrict the space of searching by set rules that will not be extended
more. Pages that don’t have required relative frequency are added to a set OTHERS and the system works with
this set as with single page.

Found rules could be saved to the file (and loaded back) or exported to Excel. The application enables also
to predict a next page in a sequence.

Initialization
for each page page occurring in the data
1. compute its relative frequency in the data as

P =
of occurrence of page in the input episodes

of all input episodes

2. if P ≥ nmin
2.1 add default ⇒ page into the list of rules Rules
2.2 add page into list of pages Pages
2.3 add default ⇒ page into list of implications Impl

Main loop
while Impl not empty do
 1. take first rule Ant ⇒ page from Impl
 2. if length of Ant < lmax then
 2.1. for each page pp from Pages
 2.1.1 find the most specific generalization of the rule pp//Ant ⇒ page in
 Rules (denote it AntX ⇒ page)
 2.1.2 compare (using chi2 test) the validity of rules pp//Ant ⇒ page and
 AntX ⇒ page

2.2. from all created rules pp//Ant ⇒ page select the one with the most
significant difference in validity (denote this rule ppbest//Ant ⇒ page)

2.3. if ppbest//Ant ⇒ page significantly at a given significance level differs
 from AntX ⇒ page then
 2.3.1 add rule ppbest//Ant ⇒ page to Rules and Impl
 2.3.2 re-compute the validity of rule AntX ⇒ page by taking into
 account only episodes containing AntX and not containing Ant
 2.3.3 recursively update Rules (i.e. find the most specific
 generalization of AntX ⇒ page , compare this generalization
 with AntX ⇒ page, remove AntX ⇒ page from Rules if the
 difference is not significant etc.)
 3. remove Ant ⇒ page from Impl

Fig. 4. The compositional rule learning algorithm for click-stream analysis

Fig. 5. Screenshot of the system

Initialization

for each page page occurring in the data
1. compute its relative frequency in the data as

P =
of occurrence of page in the input episodes

of all input episodes

2. if p ≥ nmin
2.1. add default ⇒ page into the list of rules Rules
2.2. add page into list of pages Pages
2.3. add default ⇒ page into list of implications Impl

Main loop

while Impl not empty do
 1. take first rule Ant ⇒ page from Impl
 2. if length of Ant < lmax then
 2.1. for each page pp from Pages
 2.1.1 create the rule pp//Ant ⇒ page and compute its validity p
 2.1.2 from all rules in Rules that cover the sequence pp//Ant compute the
 resulting weight for page as w⊕(pp//Ant)
 2.1.3 compare (using chi2 test) p and w⊕(pp//Ant)
 2.1.4 if p significantly differs from w⊕(pp//Ant) then
 2.1.4.1 compute w from the formula w ⊕ w⊕(ppAnt) = p
 2.1.4.2 add rule pp//Ant ⇒ page(w) to Rules and Impl
 2.1.5 add pp//Ant ⇒ page(w) to Impl
 2.2 remove Ant ⇒ page from Impl

3 Experiments

We tested our algorithms on a real data obtained from one Czech internet shop. The log file (about 3 millions of
records – the traffic of 24 days) contained the usual information: time, IP address, page request and referee. In
addition to this, the log data contained also a generated session ID so the identification of users was relatively
easy – we treated as sequence of pages with the same ID as a visit of one user2. An example of records in the log
file is shown in fig. 4. The log file allowed us to identify two types of information about the visited page: page
type and page content. By page type we understand information related to a general structure of the internet shop
(detail of a product, shopping chart, product comparison etc), by page content we understand the product (or its
category) offered on the page. These two points of view enable us to perform two different types of analyses:
analysis of product preferences and analysis of shopping behavior.

Fig. 6. Part of the web log

In the first step of data preprocessing we identified particular users by the session ID and we created a file

containing sequences of visited pages for each user. So for the log file shown in fig. 4, we created the page-type
sequence (session)

start, dp, dp, sb, sb, end

and the page-content sequence (session)

start, 124, 148, end

for the user 1993441e8a0a4d7a4407ed9554b64ed1. In this example, dp denotes “detail of product”, sb denotes
“shopping basket”, 124 denotes “loud-speaker ” and 148 denotes “DVD player”. Note, that we added two pages
to each sequence found in the data, the start page and the end page.

In the second step we excluded sessions of length 1. This is a general recommendation as sessions of length 1
are usually created by web bots crawling the web space and collecting pages. Moreover, as we are interested in
prediction next page in a click-stream, we need sequences of length 2 and more. This reduces the number of
sessions (sequences) to 200 000; the average number of visits by one user (the average length of session) was 16;
the median was 8 and modus 2.

In the third step of data preprocessing, we created 2 basic files that entered to the analyses. In the first one,
there were saved sequences of page type regardless of the product offered on this page. In the second one, there
were saved sequences of page content (sequences of products) regardless of the page type (pages without
products were excluded from these sequences). During this step, the products were divided to 30 categories.

2 Because there was no possibility how to identify two sessions of one user we consider each session with distinct ID as one

user.

unix time; IP address; session ID; page request; referee
1074589200;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/dp
/?id=124;www.google.cz;
1074589201;194.213.35.234;3995b2c0599f1782e2b40582823b1c94;/d
p/?id=182;
1074589202;194.138.39.56;2fd3213f2edaf82b27562d28a2a747aa;/;h
ttp://www.seznam.cz;
1074589233;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/dp
/?id=148;/dp/?id=124;
1074589245;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/sb
/;/dp/?id=148;
1074589248;194.138.39.56;2fd3213f2edaf82b27562d28a2a747aa;/co
ntacts/; /;
1074589290;193.179.144.2;1993441e8a0a4d7a4407ed9554b64ed1;/sb
/;/sb/;

 The modeling consisted in searching for rules using the algorithm described in section 2. The algorithm for
searching was running repeatedly with various input parameters.

The first set of experiments was performed for the sequences of page types. Among the obtained results we
can find the rule

dp, sb -> sb (Ant: 5174; AntSuc: 4801; P: 93%)

that covers the session of user 1993441e8a0a4d7a4407ed9554b64ed1 (see above). Another interesting rules were
e.g.

 ct -> end (Ant: 5502; AntSuc: 1759; P: 32%)

 faq -> help (Ant: 594; AntSuc: 127; P: 21%)

In the listing above, ct stands for “contact”, Ant stands for ||Ant|| and AntSuc stands for ||Ant//Suc||.

The second set of experiments was performed for the sequences of products (page contents). For the request
of the data provider, we generated all rules of length 2 for the sequences of products. From these rules passes of
users between products were seen very well. Examples of such rules are:

loud-speakers -> video; DVD (Ant: 14840, AntSuc: 3785, P: 0.26)
data cables -> telephones (Ant: 2560, AntSuc: 565, P: 0.22)
PC peripheries -> telephones (Ant: 8671, AntSuc: 1823, P: 0.21)

The models obtained in both sets of experiments can directly be used to predict the behavior of an user. So

e.g. for a sequence of pages dp, sb the system will predict sb as the next page, and for the sequence loud-
speakers the system will predict video; DVD.

4 Conclusions

We present two new algorithms to learn decision rules for web usage mining, set-covering and compositional
one. Although we developed our algorithms within a project of click-stream analysis, it can be used more
generally, to predict occurrence of an event in a sequence of any types of events (e.g. transactions on banking
accounts, or network intrusion). Our experiments with a real data of an internet shop showed usefulness of the
proposed approach. In our future work, we plan to perform a thorough comparison of both approaches.

References

[1] Berka,P. - Ivánek,J.: Automated knowledge acquisition for PROSPECTOR-like expert systems. In. (Bergadano, de Raedt
eds.) Proc. ECML'94, Springer 1994, 339-342.

[2] Bruha I., Kočková S. A support for decision making: Cost-sensitive learning system. Artificial Intelligence in Medicine, 6

(1994), 67-82.

[3] Clark P., Niblett T. The CN2 induction algorithm. Machine Learning, 3 (1989), 261-283.

[4] Cooley,R. – Tan,P-N, - Srivastava,J.: Discovery of interesting usage patterns from web data. Tech.Rep. TR 99-022, Univ.

of Minnesota, 1999.

[5] Kosala R., Blockeel H.: Web Mining Research: A Survey. SIGKDD Explorations, Vol. 2 Issue 1, 2000.

[6] Michalski R.S. On the Quasi-minimal solution of the general covering problem. In: Proc. 5th Int. Symposium on

Information Processing FCIP’69, Bled, Yugoslavia, 1969, 125-128.

[7] Spiliopoulou,M. - Faulstich,L.: WUM: A tool for web utilization analysis. In Proc. EDBT Workshop WebDB’98,

Springer LNCS 1590, 1999.

[8] Srivastava J., Cooley R., Deshpande M., Tan P-N. Web Usage Mining: Discovery and Applications of Usage Patterns
from Web Data. SIGKDD Explorations, Vol. 1 Issue 2, 2000.

[9] Zaiane O., Han J.: WebML: Querying the World-Wide Web for resources and knowledge. In: Workshop on Web

Information and Data Management WIDM’98, Bethesda, 1998, 9-12.

[10] [Zaine,O. – Xin,M. – Han,J.: Discovering web access patterns and trends by applying OLAP and data mining

technology on web logs. In: Advances in Digital Libraries, 1998.

